
Improve Online Business Performance
with FastView Web Acceleration
Whitepaper

SHARE THIS WHITEPAPER

http://www.linkedin.com/shareArticle?mini=true&url=http://www.radware.com/workarea/showcontent.aspx?ID=1631291
http://www.facebook.com/sharer/sharer.php?u=http://www.radware.com/workarea/showcontent.aspx?ID=1631291
http://twitter.com/intent/tweet?text=Radware%20SSL%20Improve%20Online%20Business%20Performance%20with%20FastView%20Web%20Acceleration%20Whitepaper%20%20-%20Download%20It%20Now%20-%20http://www.radware.com/workarea/showcontent.aspx?ID=1631291
https://plus.google.com/share?url=http://www.radware.com/workarea/showcontent.aspx?ID=1631291

FastView Web Performance Optimization Whitepaper

2

Table of Contents

Executive Summary ..3

Web Application Performance Benefits..3

 SEO ranking ...4

 Page views ...4

 Increased conversions ...4

 Increased revenue ..4

Optimization Challenges ..4

 Modern Web Pages Place High Demands on Performance ..4

 User Expectations Increase ...5

 Applications Must Support Multiple Browsers ..5

 Performance Tuning is Expensive and Never-Ending ..5

Alternative Approaches to Site Optimization ...5

 Data Center Build-Out ...6

 ADCs and CDNs ..6

Radware’s Approaches to Site Optimization ..6

 FastView Optimization Treatments ..6

 Resource Consolidation and Caching ...6

Overview of Radware’s FastView Web Performance Optimization ..7

 Record and analyze site traffic ..7

 Intercept and modify site responses in real time ...7

 JavaScript Consolidation ...8

 CSS Consolidation ...8

 Image Consolidation ..9

 Image Compression ...9

 Chunked HeadStart ..10

 Dynamic Resource Discovery ...10

 Optimizing Browser Caching ..11

 Payload Reduction ..11

 Connection Management ...12

Deployment Options ...12

 Fastview Appliance ...12

 Fastview Service ...12

 Fastview Virtual Appliance ..13

Conclusions ...13

FastView Web Performance Optimization Whitepaper

3

Executive Summary
This whitepaper includes a brief overview of the performance challenges of modern web applications and
the common and current approaches used to address them. The paper also describes Radware’s FastView
proprietary web performance optimization technology drilling down into its architecture and methodology.

As organizations increase dependence on web applications for both internal productivity and external
communication with customers and partners, performance optimization emerges as an essential business driver.
Studies have demonstrated that website performance has a direct correlation with revenue in both ecommerce
and advertiser-supported applications. Users expect rich web experiences, but they easily become impatient if
pages render too slowly.

Radware has developed innovative and cost-effective technology to address web performance challenges. The
technology is encapsulated in an appliance that can be deployed physically as a piece of network hardware, or
virtually as software that runs either onsite or as a cloud service.

Radware’s FastView is an
expert system that learns
the resource usage patterns
of a site and dynamically
applies best practice coding
techniques by rewriting pages
without requiring any source
code modifications.

FastView analyzes usage patterns and page content, and develops a dynamic repository of rules and cached
resources. By strategically modifying web pages on the fly as they are sent to users, FastView is able to improve
performance significantly. The modified pages:

 • reduce the number of roundtrips required to render contents
 • execute client-side code in the most efficient order
 • automatically preload resources that are likely to be needed for
 future requests
 • tailor behavior to exploit the capabilities of the user’s browser.

As the application code or contents change, and usage patterns
shift, the rules used to modify pages automatically adjust. In addition,
FastView is based on an extensible modular framework, supporting the
addition of new or improved page treatments as they are developed.

Web Application Performance Benefits
In reference to revenue generating web applications, the old maxim “time
equals money” takes on new meaning. Reducing the time required to
render web pages, results in more online revenue. Radware has identified
four ways in which site performance directly affects business metrics:

Figure 1: In dollar terms, this means that if your site typically earns $100,000 a day,
this year you could lose $2.5 million in sales. Source: Aberdeen Group.

A 1-Second
Delay in

Page Load Time

7% Less in
Conversions

11% Fewer
Page Views

16% Decrease
in Customer
Satisfaction=

Visitors in the top
ten percentile of
site speed viewed
50% more pages
than visitors in
the bottom ten
percentile.

Source: AOL

FastView Web Performance Optimization Whitepaper

4

SEO ranking
Google and other search engines allocate either a set period of time or
a set quantity of data for crawling each site. Radware has performed
a customer study confirming that after applying its optimizations to a
site, the Googlebot web crawler was able to cover approximately twice
as many pages as the un-accelerated site. Increasing the number of
crawled pages directly affects rankings and ultimately traffic.

Page views
AOL conducted studies in which they measured site performance and
page views. They found that visitors to the top 10% best performing
sites viewed 50% more pages than visitors to sites in the bottom 10%.
On average, visitors to the faster half of the sites viewed 9% more
pages than visitors to the slower sites.

Increased conversions
Shopzilla decreased its average page load time from 6 seconds to 1.2 seconds and experienced a 12% increase
in revenue and a 25% increase in page views. The faster site also doubled the number of sessions from search
engine marketing and cut the number of required servers in half.

Increased revenue
Microsoft’s Bing site conducted a study wherein they slowed page load times by 2 seconds. As a result of the
slowdown, users ran approximately 2% fewer queries, clicked 3.75% less often, and reported a significant level
of satisfaction with their overall experience. Conversely, speeding up the site by 2 seconds resulted in a 5%
revenue increase.

Optimization Challenges

Modern Web Pages Place High Demands on Performance
The HTTP and HTML protocols that underlie web applications were originally developed to support transmission
and rendering of very simple pages by today’s standards. New technologies, such as JavaScript and cascading
style sheets (CSS), as well as new media types, such as Flash videos, and more graphics-intensive pages have
all added richness to the experience. However, the underlying architecture of page delivery has not evolved
quickly enough to keep pace.

Although increased bandwidth has largely mitigated the impact of larger payloads, it hasn’t compensated for the
increased number of roundtrips required to render pages.

Many of the techniques implemented by Radware’s FastView are directed at reducing the number of roundtrips
required and re-ordering them to minimize page load times.

In 1995 the average web page contained just 2.3 objects, requiring only 2.3 calls to whatever data centers
were serving the site. Today the average page contains 108 objects, requiring over 40 times more roundtrips
to the servers, and thereby delaying full rendering of the page. Page size also increased significantly during
these years, from an average of 14.1k to 1436k. And in spite of the improvements in bandwidth, this change
significantly affected performance, increasing average load times by over 60%.

Sped up average page load time from 6
seconds to 1.2 seconds.

Results: Increased revenue by 12% and
page views by 25%.

Source: Shopzilla

S
ix

 S
ec

on
ds

Revenue

12%

Load Time

1.2
seconds

Page Views

25%

FastView Web Performance Optimization Whitepaper

5

User Expectations Increase
As users continue to increase the time
spent online, the statistics on their
escalating expectations are sobering.
In 2006, the average online shopper
expected a web page to load in 4
seconds. Today’s shopper expects a
page to load in 2 seconds or less. Up
to 57% of shoppers will abandon a site
after waiting 3 seconds for a page to
load, and 8 out of 10 people will not
return to a site after a disappointing
page load experience. Almost one third
of these dissatisfied users will go on
to tell others about their disappointing
experience. Almost 60% of mobile web
users expect sites to perform as quickly
on handheld devices as they do on
home computers, and about the same
number of mobile users say they would
be unlikely to visit a site again after a
poor mobile web experience.

Applications Must Support Multiple Browsers
The days of being able to create websites that are optimized for only one or two browsers are clearly behind us.
Browsers based on the WebKit open source engine - including Apple Safari and Google Chrome - as well as a
growing array of mobile browsers, are increasingly taking market share from Internet Explorer and Firefox. Although
Internet Explorer continues to be a widely used browser, its capabilities vary significantly across versions.

To be most effective for even a majority of users, optimization code must be tailored to the browser type and
version used for each request.

Performance Tuning is Expensive and Never-Ending
Given the high demands that modern web applications place on
servers, the high expectations of users, and the need to address
a wide variety of browsers, performance tuning through code
optimization becomes very expensive. As sites evolve, as usage
patterns shift, as new best-practice coding techniques develop,
and as new browsers and browser versions emerge, the task must
continually be revisited, and the complexity of the task requires that
it be assigned to senior-level programmers.

Alternative Approaches to Site Optimization
Because of the prohibitive cost of continuous optimization code
maintenance, and because most organizations prefer allocating
top programming resources to develop new features, the preferred
route to improve performance is often to upgrade hardware or to
engage external content delivery services.

2006 2010 2015
The average page size
was a lean, mean
14.1k, due to the fact
that it contained just
2.3 objects. That
means just 2.3 calls to
whatever data centers
were serving the site.

The average page size is
498k and contains about
75 objects – everything
from CSS to images to
Javascript. That means
75 server round trips are
needed to pull all the
page’s resources to the
user’s browser. The
upshot: pages that load
slowly and inconsistently.

In 2013-2015,
we experienced a
massive growth in
average page size,
reaching 1436K and
contains 108 objects.

The implication was a
dramatic 60%
slowdown in average
page load time.

Figure 2: Web pages are bigger and more complex.

57% of online consumers
will abandon a site after
waiting 3 seconds for a
page to load.

80% of these people will
not return.

Of these, almost half will
go on to tell others about
their negative experience.

Source: PhoCus Wright

FastView Web Performance Optimization Whitepaper

6

Data Center Build-Out
Adding and upgrading servers can improve site performance to a point, but the results are often disappointing
because per-request server processing time represents only one small part of the performance matrix.
Organizations are often disappointed to discover that adding or upgrading servers can have little effect on the
time required to load each page.

To supplement infrastructure upgrades, U.S. companies spend an additional $4.2 billion per year on application
delivery controllers (ADC) and content distribution networks (CDN).

ADCs and CDNs
An ADC is a type of network device that provides a set of processing features to optimize enterprise application
environments. ADC devices are situated inside the data center firewall and represent an evolution from basic
load balancers. In addition to load balancing, modern ADCs monitor server health, implement advanced routing
strategies, and offload common server tasks such as SSL termination and TCP connection management.

A CDN is a service that provides multiple content caches that are distributed geographically across a service
area. CDNs accelerate site performance and improve scalability by increasing the number of servers that fulfill
requests for a site’s content and shorten the physical distance traversed by those requests. In addition to the
edge servers, CDNs also may provide redundant core and backup servers and redirection services that ensure
high availability. They do not reduce the number of requests required to render each page and have no effect on
browser efficiency.

Radware’s Approaches to Site Optimization
Radware’s approach to site acceleration is intended to complement, not
necessarily replace other forms of site optimization, such as server build-
out, ADCs and CDNs. Controlled performance studies have consistently
shown that adding Radware’s FastView improves performance, even
when other solutions are already in place, by doing the following:

	 •	 consolidating and caching resources to decrease the number
 of roundtrips
	 •	 improving the utilization of browser caches
	 •	 reordering page operations to avoid blocks to rendering
	 •	 managing browser connections

FastView Optimization Treatments
Radware’s FastView is built on an extensible software framework that
enables the company to deploy new or improved treatments. Radware
continuously confers with industry leaders and performs its own research
to ensure that its treatments continue to represent best practices and
keep pace with browser innovations. The following sections drill down
the technical details of several of the current set of treatments.

Resource Consolidation and Caching
Radware’s FastView implements multiple treatments for consolidating and caching resources such as
JavaScript, cascading style sheets (CSS), and images. These treatments reduce the number of roundtrips
required to render each page and thereby speed up page loading. The system accomplishes this acceleration
by consolidating resources of the same type into single resources and replacing multiple resource links in each
page with a single link to the new consolidated resource.

Total Savings
FastView works in conjunction
with content delivery networks
and application delivery
controllers to deliver cumulative
performance	benefits.

Unaccelerated site
Number of requests = 63
Payload = 769 kb
Page	load	time	=	9.5s

CDN + ADC only
Number of requests = 63
Payload = 769 kb
Page	load	time	=	6.2s

FastView + CDN + ADC
Number of requests = 9
Payload	=	456	kb
Page	load	time	=	2.8s

FastView Web Performance Optimization Whitepaper

7

Overview of Radware’s FastView Web Performance Optimization
In addition to reducing the time it takes for each resource to be delivered from servers to clients, Radware’s
FastView focuses on reducing the number of requests required to render each page, reducing the number of
bytes in page responses, optimizing the order in which requests are made, and improving browser rendering
efficiency. Accomplishing this is a two-step process:

Record and analyze site traffic
Using an offline, asynchronous process that does not interfere with normal site operations, FastView
samples all request/response pairs and dissects the composition of the site’s pages. Employing proprietary
heuristics, FastView detects patterns of resource usage and formulates rules for resource consolidation and
caching, grouping resources according to the pages that request them. The system also tracks the rate at
which resources change, classifying them as relatively static or relatively volatile resources.

This analysis process results in a dynamic cache of per-request processing instructions and resources.
The cache is dynamic because the sampling process never ends. As new information about site usage is
analyzed, cached instructions and resources are continually updated.

Intercept and modify site responses in real time
These modifications, which are highly optimized to occur very rapidly, change the behavior of the web pages
returned by the site, without altering their appearance to the user. These modifications consist of a series
of treatments that the system applies according to the cached processing instructions for each page, and
these page modifications vary based on the browser being used for each request.

This two-part process is illustrated in the following figure. The block labeled “Response Analysis and
Consolidation” represents the offline asynchronous process of analyzing pages, formulating rules and
gathering cached resources. The block labeled “HTML Response Rewriter” represents the real-time process
that intercepts pages and applies customized processing instructions to improve rendering performance.

Figure 3: Radware’s FastView web performance optimization consists of recording and analyzing site traffic
and intercepting and modifying site responses in real time.

Compiler works offline to:
1. Render page for specific browser
2. Calculate best browser-specific optimization techniques for the page
3. Create and store optimized resources
4. Create Acceleration Template

Rewriter works in real time to:
1. Apply the appropriate Acceleration Template
2. Deliver the optimized pages to the user

Compiler
Rewriter

Servers User

FastView Web Performance Optimization Whitepaper

8

The offline analysis engine examines the site’s page responses, sorting out which resources are used together,
and developing rules for consolidating the resources. After sampling quotas have been met, the system creates
and caches consolidated resource files based on the analysis findings. Then the page rewriter engine is ready
to begin modifying pages as they are sent to clients, replacing multiple calls for individual resources with much
fewer calls for the new consolidated resources. When necessary, the rewriter also adds code to the page that
allows it to parse out the individual resources after they are delivered in consolidated form. The system then
continues to examine and analyze the site’s responses and adjusts its consolidation rules as necessary.

Many web pages contain a combination of static and dynamic content. For example, on the user profile page of
a social networking site, most of the images, JavaScript and CSS are static, but specific user content such as
the profile image or other user-added images often change. These resources will be different per user, and may
even change for the same user over the course of a session.

One essential feature of Radware’s FastView is to detect this dynamic data by sampling multiple responses and
to recognize that it should not be consolidated. Even after consolidation, FastView remains vigilant in sampling
unoptimized responses and invalidates or adjusts consolidation rules to ensure that dynamic data is passed
through to the user. Configuration settings are also available to allow developers or administrators to flag certain
content as exempt from consolidation treatments.

JavaScript Consolidation
One of FastView’s resource consolidation treatments focuses on JavaScript. The JavaScript code used by a
web page is often split into multiple files, either because developers use external libraries or because they create
multiple files to implement their own code modularity. JavaScript can also be included from external links that
dynamically create the script based on the link’s URL.

FastView analyzes the JavaScript resources used in each page and determines whether or not they are static
or dynamic. Once it has determined which resources can be consolidated, it then examines their contents to
extract any inline scripts. Inline scripts include, for example, code that executes immediately when a page loads
rather than in response to an event such as a body onload() event. The order and placement of each inline script
is maintained during HTML rewriting, to ensure that the resulting JavaScript works correctly in the browser. The
inline scripts are extracted and a processing instruction is created to rewrite the original script tags.

The remainder of JavaScript code, which generally contains only methods, variable declarations, constant
assignments, or classes, is consolidated into a single JavaScript file. FastView creates a rule to insert a script
link referencing this file right before the first JavaScript tag in the response. Another rule removes the script
tags for the original JavaScript resources that were consolidated. In addition, the consolidated JavaScript is
“minified” by removing whitespace and comments to further reduce the size of the resource.

CSS Consolidation
CSS consolidation is similar to JavaScript consolidation, but is not as complex. CSS does not execute inline, so
after all of the CSS has been consolidated, a rule is added to insert a link to the consolidated CSS resource into
the <head> section of the HTML response. By inserting the link in the <head> section, FastView ensures that
the page does not have to wait for CSS while rendering, thus improving load times. Rules are also generated to
remove links to the original unconsolidated CSS resources.

As with JavaScript, the consolidated CSS resource can also be minimized by removed whitespace and
comments, as well as by replacing verbose CSS style syntax with equivalent syntax that is more concise.

FastView Web Performance Optimization Whitepaper

9

Image Consolidation
Image consolidation is achieved by automating the implementation of a CSS technique called “spriting.” CSS
sprites group multiple images into one composite image and display them using CSS background positioning.
FastView brings the advantages of this advanced technique to applications that were not originally developed to
employ it. Consolidating many images into a single CSS sprite significantly impacts performance by replacing
multiple calls for the individual images with just one call for the sprite.

To implement spriting, FastView locates tags in the HTML response, as well as any styles in the CSS that
use background images. The system analyzes these styles to determine whether they can be supported by using
a sprite. For example, a background image that has no fixed height or width but is positioned with the “bottom” or
“right” keywords cannot be supported within a sprite. In this case, the optimizer recognizes that there is no way to
use absolute positioning with that image and excludes it from the sprite. Most images, however, can be included.

Next, FastView determines how many sprites to create and what types. In general, the system generates at
least one sprite per image type used on the page. For example, it creates one sprite for jpg images, one for gif
images, and one for png images.

Further analysis ensures that the resulting rules produce optimized pages that are indistinguishable from the original
unoptimized ones. For example, styles that use “repeat-x” and “repeat-y” often cannot be combined within the
same sprite, because repeating images will overlap during sprite creation. If the original style uses a background
image with a repeat-x or repeat-y, which usually is implemented with a 1px width, then the image is extended all
the way across or down the sprite, so that when the repeating takes place it does not repeat the transparent space
to the right or bottom of the image. If the original style positions a background image with a 100% width or height,
then the image is right or bottom aligned in the sprite to achieve consistency with the original.

Sets of images that are used on multiple pages may also be consolidated into sprites. This promotes efficient
use of the browser cache, because the sprite containing the consolidated images is downloaded once for the set
and not once for each page that uses any of the images in the set.

When FastView rewrites the HTML of each page, it creates a new CSS class for each original image, using
the correct sprite and positioning to duplicate the original page’s appearance. A rule replaces the “src” of the
original image with a small transparent image (1x1px) and modifies any CSS class for the image to use the new
class. Similarly, existing background image styles are modified to use the new sprites. FastView modifies the
background-url attribute to reference the correct sprite, and sets the position-x and position-y attributes to the
positions of the offset location of the image in the sprite. If position-x and position-y are already in use, the offset
is added to the original values to ensure correct positioning.

It is apparent how difficult and time consuming it would be to apply these techniques manually to every page in a
web site, and how much work would be involved in maintaining the code as the site changed. This is especially
true because the code must be customized for each type of browser. Radware’s FastView is like a coding
robot that continuously performs these tasks automatically, rewriting code on the fly very rapidly as pages are
delivered to users, based on rules and cached resources that are constantly updated based on offline analysis.

Image Compression
Organizations are using graphically reach designs to make websites more user friendly and appealing to the eye.
However, this comes with a price, and images are taking more than 55% of the average web page’s payload. Yet
most sites fail to optimize images, or use image optimization techniques like Progressive JPEG which accelerate
the image initial download but worsen the overall user experience.

FastView Web Performance Optimization Whitepaper

10

PerfectImage is an algorithm developed at Radware to optimize images - significantly reducing image file
size while ensuring minimal image quality degradation. By using Digital Camera Images (DCIM) human vision
algorithm, images are carefully compressed using various image compression formats (such as JPEG, JPEG
2000, WebP, and others) so that the final image has less than 1.5% difference vs. the original image, which is
invisible to the human eye. As a result, the image file size can shrink by up to 80%.

The PerfectImage algorithm, incorporated in FastView, optimizes images embedded in web pages on the fly.
For every browser request, PerfectImage selects the most efficient image compression format supported by the
browser, and that yields the highest compression ratio. That way, image compression is optimized per request,
per browser type and version, while ensuring quality degradation is minimized and remains invisible to the
human eye.

Chunked HeadStart
The preceding discussion of CSS and JavaScript consolidation describes techniques that move certain
segments of code up into the <head> section of a page to avoid having them block rendering activities that
occur in the body of the page. One further extension of this basic technique is a proprietary Radware treatment
called “Chunked HeadStart.”

The name of this treatment derives from its use of HTTP’s chunked encoding, which allows servers to begin
responding to requests before the entire response is available to be served. In addition to using the <head>
section of a page, as described above, this treatment also makes use of the fact that browsers are capable of
handling two separate <html> sections for a single page. FastView can implement rules in a new <html> section
inserted above the page’s main <html> section, which can remain untouched by this treatment.

Once FastView has performed offline analysis of several requests and responses for a given page and has
determined that the page would benefit from Chunked HeadStart, it formulates a rule that is applied as soon as a
request for the page is received. FastView initiates chunked encoding and sends back to the client a partial
response that includes links for the resources required for the page, often in consolidated form. FastView
forwards the original request to the Web server so that the balance of the page can be constructed. While the
server is completing the response, the browser is already processing the first part that was sent by FastView.
The browser retrieves and caches the resources need for the page, so that when the remainder of the page
arrives, the browser can retrieve the required resources from its cache.

Chunked HeadStart enables a form of distributed parallel processing, whereby resources are fetched and
cached by the client while the server is still creating the response that will use these resources.

Dynamic Resource Discovery
As websites continuously work to enhance website functionality, they make increasing use of applets and
programs that run on the browser side (such as Java Scripts and CSS templates). The execution of this code
often causes the browser to dynamically call for additional resources that are required for proper presentation of
the page, resources that are invisible to standard WPO engines and thus can’t be optimized.

To ensure FastView can apply its various optimization treatments on all objects, even those dynamically called
by code running on the browser, a new mechanism was incorporated into FastView, which allowed it to simulate
the browser behavior and execute the code running in that page. As a result, FastView dynamically discovers
all objects required by that web page, and apply its various optimization treatments on all of these objects. As
an example - many of the images are called by CSS templates (e.g. background images) and by Java Scripts.
Combining FastView’s dynamic discovery capabilities with PerfectImage, advanced caching, preloading and
other acceleration treatments, FastView can apply more optimization treatments on more objects per page and
accelerate web pages even more.

FastView Web Performance Optimization Whitepaper

11

Optimizing Browser Caching
Chunked HeadStart is just one of several FastView treatments that optimize browser caching. The most efficient
way for a page to complete a resource request while it is rendering is to obtain the resource from the local
browser cache. In addition to using Chunked HeadStart to populate the browser cache with resources needed
for the current request, FastView also seeds the browser cache with resources that are likely to be needed for
subsequent requests.

Part of the offline analysis that FastView performs is to detect navigation patterns. FastView learns which
pages are most likely to be requested following a request for a given page. Based on this analysis, the system
creates and applies rules that send these anticipated resources to the browser after rendering of the current
page is completed. When the anticipated future requests occur, the required resources are already cached on
the browser and no further roundtrips to the server is needed, significantly speeding up the rendering of those
pages. The rules used for this predictive browser caching are continually reviewed and updated by FastView,
based on the latest navigation statistics. In addition, the system carefully sets and adjusts invalidation rules for
cached content to ensure that users aren’t exposed to out-of-date versions of resources.

Another treatment for optimizing browser caching relies on an analysis algorithm that distinguishes a user’s initial
visit to a page from repeat visits to that page. Based on usage statistics, FastView identifies pages that are likely
to be “landing pages” that are often the first page of a site that a user visits. The system then employs several
mechanisms to distinguish when identified landing pages are actually being revisited rather than visited for the
first time.

When a page is being visited for the first time, no resources for the page are yet present in the local browser
cache, and the most efficient way to deliver the page is to embed all required resources within the initial page
response. However, once a page has already been visited and the browser cache has been populated with its
resources, or once visits to other pages on the site have pre-populated the browser cache with resources for
the page, then it would be inefficient to send all resources inline. For this reason, performance is significantly
improved by the system’s ability to detect when a page is being visited initially as a landing page and when the
request represents a repeat visit to the page.

Payload Reduction
In addition to reducing roundtrips to the server, FastView also reduces the size, or “payload,” of each response.
In some cases, this involves standard compression techniques, such as image compression and the use of gzip.
As previously noted, FastView also “minifies” CSS and JavaScript by eliminating white space and comments,
and by replacing verbose syntax with more concise syntax that provides equivalent functionality.

Another approach to payload reduction is to extract large chunks of page content that are not actually needed
on the client. For example, ASP.NET pages often contain a large hidden control that stores page state. This View
State content is not needed to render the page. Instead it is used by ASP. NET to detect user entries, actions, or
modifications when HTML forms are posted back to the server.

FastView performs a View State-specific treatment that extracts this data from responses, tags it with a unique
key, and stores it in the memory store of the optimizer engine. The unique key is inserted into the page, and
when a future request posts back the page, the system uses the unique key to retrieve the stored ViewState data
and re-insert it into the request.

FastView Web Performance Optimization Whitepaper

12

Connection Management
Although modern browsers are capable of opening more than one TCP connection to a domain, they still are
rarely able to determine the optimum number of connections to open. FastView implements a treatment that
selectively “tricks” the browser into opening additional connections by using prefixes to create varied host
domains. This technique, sometimes called “domain sharding,” makes the browser think that it is communicating
with multiple servers and therefore should open additional connections.

For example, some resource links to www. domain-name.com are rewritten as 1.www. domain-name.com or
2.www.domain-name. com. The browser will then open additional connections for each of these new host
names, increasing the number of parallel downloads from the site. Implementation of this treatment also requires

the creation of DNS entries to direct all requests to the original IP address. Of course, too many concurrent
connections can degrade performance rather than enhance it, so FastView carefully manages this treatment to
ensure optimum bandwidth utilization for each type and version of browser.

Deployment Options
FastView provides multiple deployment options:

 • Appliance – a hardware network appliance manufactured by Radware and installed within the
 company’s network.
 • Virtual – a virtual machine that is installed as software on the company’s server.
 • Cloud Service – Web traffic is directed through a virtual FastView instance that is external to the
 company’s data center.

These configuration options are illustrated in the following figure.

Figure 4: Multiple deployment options.

Fastview Appliance
When implemented as a hardware appliance, Radware’s FastView supports both vertical and horizontal scalability
through supplemental hardware installation. In the rare case of an unresolved device failure, traffic automatically
routes around the device, allowing unoptimized responses to be served until the system is restored.

Fastview Service
Radware’s FastView Service uses DNS settings to redirect all web traffic to pass through a virtual FastView
instance that is external to the company data center, in “the cloud”. Because of this, it can be implemented
quickly – with one flip of a switch – and scaled rapidly. The FastView service also supports applications in
physical and virtual environments and can easily be scaled and deployed on demand.

UserData Center

Virtual Appliance

Cloud

Service

FastView Web Performance Optimization Whitepaper

13

The FastView service is identical to the appliance in that it applies the same optimization technologies and
treatments, has been subjected to the same rigorous internal testing, and delivers identical acceleration results.

Fastview Virtual Appliance
The FastView Virtual Appliance (VA) is designed to run over VMware Virtual Infrastructure. It has been engineered
to meet key virtualization requirements, ensuring its interoperability with virtualization tools. With the exception
of how it is delivered, the FastView VA is identical to the FastView appliance. Like the appliance, it is available in
three versions: FastView 600, 1800 and 3600.

In any deployment – appliance, service, and virtual – FastView can complement a load balancer or ADC
deployment, significantly enhancing its acceleration functionality and offloading efficiency. High availability
device configuration to provide automatic failover.

Conclusions
Companies that depend on web-based applications to generate revenue, soon realize that site performance
directly correlates with increased conversions, increased shopping cart size for ecommerce, increased page
views for advertising, and higher search rankings. Yet consistent high performance is very difficult to ensure,
even with expensive hardware and service additions, because none of these additions can compensate for the
inevitable inefficiencies in page construction and rendering.

Radware’s FastView is unique in its ability to address application-level inefficiencies that could otherwise only be
solved with continuous recoding by a devoted team of skilled programmers. Using an extensible and self-tuning
set of proprietary algorithms, FastView automatically and safely improves page performance without altering the
final appearance of the page.

FastView does not require software, server or network changes, and it can be implemented easily in a variety
of hardware-based, software-based, or service-based configurations, yielding immediate verifiable results.
Any previous or subsequent investments in ADC or CDN devices and services are complemented by the traffic
reduction and enhanced browser caching that FastView enables.

© 2015 Radware, Ltd. All Rights Reserved. Radware and all other Radware product and service names are registered trademarks of Radware
in the U.S. and other countries. All other trademarks and names are the property of their respective owners.

 Platform Supported os version

VMware Virtual Infrastructure Yes ESX/ESXi	3.0	(3.0.0+)

VMware vSphere 4 Yes ESX/ESXi	4.0	(4.0.0+)

PRD-FastView-FEO-WP-04-2015/05-US

	Executive Summary
	Web Application Performance Benefits
	SEO ranking
	Page views
	Increased conversions
	Increased revenue

	Optimization Challenges
	Modern Web Pages Place High Demands on Performance
	User Expectations Increase
	Applications Must Support Multiple Browsers
	Performance Tuning is Expensive and Never-Ending

	Alternative Approaches to Site Optimization
	Data Center Build-Out
	ADCs and CDNs

	Radware’s Approaches to Site Optimization
	FastView Optimization Treatments
	Resource Consolidation and Caching

	Overview of Radware’s FastView Web Performance Optimization
	Record and analyze site traffic
	Intercept and modify site responses in real time
	JavaScript Consolidation
	CSS Consolidation
	Image Consolidation
	Image Compression
	Chunked HeadStart
	Dynamic Resource Discovery
	Optimizing Browser Caching
	Payload Reduction
	Connection Management

	Deployment Options
	Fastview Appliance
	Fastview Service
	Fastview Virtual Appliance

	Conclusions

