

 ERT Threat Advisory
Hajime – Friend or Foe?

April 26, 2017

Abstract
Hajime is a sophisticated, flexible and future-proof IoT botnet. It is capable of updating itself and
provides the ability to extend its member bots with ‘richer’ functions, both efficiently and fast.
The Hajime botnet was first reported by Sam Edwards and Ioannis Profetis from Rapidity
Networks, who discovered the first occurrence of Hajime back in October, 2016, including the
update blog by Ioannis (@psychotropos), and the more quantitative research by Symantec,
which assesses the size of the threat.

Figure 1: Message periodically displayed on the terminal by Hajime

The distributed bot network used for command and control and updating is overlaid as a
traceless torrent on top of the well-know public BitTorrent peer-to-peer network using dynamic
info_hashes that change on a daily basis. All communications through BitTorrent are signed and
encrypted using RC4 and private/public keys.

The current extension module provides scan and loader services to discover and infect new
victims. The efficient SYN scanner implementation scans for open ports TCP/23 (telnet) and
TCP/5358 (WSDAPI). Upon discovering open Telnet ports, the extension module tries to exploit
the victim using brute force shell login much the same way Mirai did. For this purpose, Hajime
uses a list consisting of the 61 factory default passwords from Mirai and adds two new entries,
‘root/5up’ and ‘Admin/5up,’ which are factory defaults for Atheros wireless routers and access
points. In addition, Hajime is capable of exploiting ARRIS modems using the password-of-the-
day “backdoor” with the default seed as outlined here.

Hajime does not rashly follow a fixed sequence of credentials, from Radware’s honeypot logs,
we could conclude that the credentials used during an exploit change depending on the login
banner of the victim. In doing so, Hajime increases its chances of successfully exploiting the
device within a limited set of attempts and avoid the system account being locked or its IP being
blacklisted for a set amount of time.

Attack Methods
From its honeypot interactions, Radware discovered that when presented with a MikroTek login
banner, Hajime will consistently use ‘admin’ as user with an empty password, much in line with
the default factory credentials of RouterOS as per the Mikrotik documentation. When the login
banner revealed only ‘(none)’ as platform description, the first user and password was
consistently ‘root’ and ‘vizxv’ signature credentials for Dahua cams.

It is not clear at this point which vulnerabilities or methods are used to exploit devices that have
their WSDAPI port publically exposed.

https://security.rapiditynetworks.com/publications/2016-10-16/hajime.pdf
https://security.rapiditynetworks.com/publications/2016-10-16/hajime.pdf
https://x86.re/blog/hajime-a-follow-up/
https://www.symantec.com/connect/blogs/hajime-worm-battles-mirai-control-internet-things
https://w00tsec.blogspot.com/2015/11/arris-cable-modem-has-backdoor-in.html
https://wiki.mikrotik.com/wiki/Manual:First_time_startup

 ERT Threat Advisory
Hajime – Friend or Foe?

April 26, 2017

Upon execution, Hajime prevents further access to the device through filtering ports known to
be abused by IoT bots such as Mirai:

 TCP/23 (telnet) – the primary exploit vector of Mirai and most IoT botnets

 TCP/7547 (TR-069) – as first used in the DT attack by a Mirai variant

 TCP/5555 (TR-069) – alternate port commonly used in TR-069

 TCP/5358 (WSDAPI) – see separate section at the end about WSDAPI

At the same time, Hajime also tries to remove existing firewall rules with the name ‘CWMP_CR’.
CWMP refers to the CPE WAN Management Protocol or TR-069. Removing any potential
CWMP rules set by an ISP to allow specific management IPs or subnets that will now be locked
out leaving ISPs without control of the CPE device.

Besides locking down the device, Hajime opens up port UDP/1457 and a random higher port
number (> 1024) for UDP and TCP. In doing so, allowing itself to use BitTorrent DHT and uTP
from port UDP/1457 to build its peer-to-peer command and control network. The random higher
port serves the purpose of the loader service used by the infection process to remotely
download the malware onto new victims.

The extension module also has traces of a UPnP-IGD implementation, which allows Hajime to
create dynamic port forwarding rules in UPnP enabled gateways, thereby allowing it to operate
effectively from inside a protected home network. Even when all incoming traffic is blocked by a
default ISP managed ruleset on the gateway, UPnP-IGD allows to punch pinholes and expose
internal services to the public internet.

Hajime has binaries for the arm5, arm6, arm7, mipseb and mipsel platforms. Psychotropos
maintains a log of updated binaries and file hashes on his Github repository. Since January 28th
the main binary has been updated six times, with the last update discovered on March 5, 2017.
The extension module has been updated four times between January 18th and February 26th.
Since the discovery of Hajime back in October 2016, the extension module changed name from
‘exp’ to ‘atk’. The main binary name remained ‘.i’ and the downloader stub used during some
infections is still called ‘.s’.

Hajime prefers the use of volatile file systems as working directory, ensuring any indicator of
compromise is gone after a device reboot. Hajime is not persistent, meaning that rebooting the
device will clean it from infection, but only until the next infection.

Stats

Infection attempts by Hajime account for nearly 50% of the IoT bot activity in Radware’s
honeypots. In a timespan of little over five weeks, Radware recorded 14,348 infection attempts
from 12,023 unique IPs. Considering Hajime sometimes uses a different infected node to
download its malware, the total number of unique infected IPs we counted is 18,623.

https://github.com/Psychotropos/hajime_hashes

 ERT Threat Advisory
Hajime – Friend or Foe?

April 26, 2017

Period of recording March 14 – April 25. 2017

Total Hajime infection attempts 14,348

Unique Hajime IPs performing
infection

12,023

Unique Hajime IPs providing
loader service

9,832

Total Hajime infected IPs 18,623

Below is a heat map representing the geographic concentration of the source of infection
attempts:

(Figure 3: geographic concentration of source of infection attempts)

 ERT Threat Advisory
Hajime – Friend or Foe?

April 26, 2017

Below a graph with the most infected countries:

(Figure 4: top infected countries)

The next two graphs represent the geographic spread of infected devices performing infection
attempts on our honeypot (12,023 data points) versus infected devices used as loader service
by infecting devices (9,832 data points):

 ERT Threat Advisory
Hajime – Friend or Foe?

April 26, 2017

(Figure 5: geographic map with sources of infection attempts)

(Figure 6: geographic map with loader service locations)

The graph below represents the global geographic spread of the all infected devices, basically
the union of devices performing infection and devices used as loader service (18,623 data
points in total)

 ERT Threat Advisory
Hajime – Friend or Foe?

April 26, 2017

(Figure 7: geographic spread of all infected devices – source: Radware)

Compare this graph with the below graph published by Waylon Grange in his Symantec blog
exactly one week ago and notice the striking similarity between what the respective honeypots
from Symantec and Radware recorded from a geographic infection point of view (note: smaller
dots on the Radware chart):

(Figure 8: geographic spread of all infected devices - source: Symantec)

https://www.symantec.com/connect/blogs/hajime-worm-battles-mirai-control-internet-things
https://www.symantec.com/connect/blogs/hajime-worm-battles-mirai-control-internet-things

 ERT Threat Advisory
Hajime – Friend or Foe?

April 26, 2017

Sophistication

The Hajime botnet is sophisticated compared to its IoT botnet brethren:

 It changes the telnet brute force sequence of credentials depending on the platform it is

trying to exploit

 It is capable of infecting ARRIS modems using the password-of-the-day “backdoor” with

the default seed as outlined here

 During the infection process, it is able to detect the platform and work its way around

missing download commands such as ‘wget’ through the use of a loader stub ‘.s’

 The loader stub is dynamically generated using hex encoded strings based on

handcrafted assembly programs that are optimized for each supported platform. The IP

address and port number of the loader are patched in the binary upon dynamically

generating the loader stub

 The loader from which the malware is downloaded does not have to be the node that is

performing the infection. Hajime has way of detecting the reachability of the infecting

device and if its loader service port is not available from the internet it will use another

node from its network that is known to be reachable to download the initial malware

binary

 It uses a trackerless torrent network for command and control (C2) message exchange

 It uses the torrent network to share and update itself and its extension module(s) to/from

peers

 To minimize the required ports and TCP sockets, it uses the uTP BitTorrent protocol

instead of just TCP in torrent transfers – uTP implements in-order delivery and reliable

connectivity on top of UDP and only requires 1 single socket and UDP/port for all DHT

and torrent communications

 All torrent exchanges are encrypted and signed using public and private keys

 The scan and load extension module has the capability to perform UPnP-IGD and punch

pin-holes in gateway devices to expose any ports it requires making it effective also from

inside the homes

Purpose and Attack Types

There has been lots of speculation about the greyness of the author and the intent and purpose
of Hajime. If we set aside the speculation and the motivation of the original author, but focus on
the potential purpose of such large IoT botnets and consider for a moment that this botnet could
be hijacked from its original owner. Sam and Ioannis from Rapidity Networks uncovered a
vulnerability in the encryption implementation of the initial Hajime malware and were able to
reverse the messaging protocol. The vulnerability has been patched and updated, but a botnet
this size with a flexible backend and high potential for criminal behavior will certainly attract the
attention of black hats; whoever has the ‘keys’ of the botnet will decide its fate.

Because of its flexible and extensible nature, Hajime can easily be repurposed and leveraged to
perform eg:

 DDoS attacks

https://w00tsec.blogspot.com/2015/11/arris-cable-modem-has-backdoor-in.html

 ERT Threat Advisory
Hajime – Friend or Foe?

April 26, 2017

 Massively distributed vulnerability scanning allowing hackers to detect vulnerable, public

exposed services and exploit them within hours after the disclosure of a new

vulnerability (most systems are not patched within a few hours, as history has taught us).

Custom exploit modules can be written in any language, as long as they compile to a

binary for one of the supported platform, and distributed through the torrent overlay to be

executed by 10,000s, maybe even 100,000s of distributed nodes across the internet.

 Massive surveillance network – the extension module could tap into RTSP streams from

camera’s

 IoT Bricker network – leveraging the work of BrickerBot, it would be a small and easy

change to the atk program to perform a self-destructive sequence upon receiving a ‘plan

B’ command through the C2 channel. A hacker could target and put a specific region or

city in the dark by bricking all the infected devices corresponding to that region or city

based on geographical IPs.

Infection Process

Hajime uses the same mechanism as Mirai to exploit victim IoT devices: a brute force telnet
using 61 factory default passwords, but adds two new credentials ‘root/5up’ and ‘Admin/5up’
which, according to wikidev, are factory defaults for Atheros wireless routers and access points.
In addition, as reported by Pshychotropos, Hajime is now capable of infecting ARRIS modems
using the password-of-the-day “backdoor” with the default seed as outlined here.

Hajime does not rashly follow a fixed sequence of credentials; the credentials used during an
exploit variate depending on the login banner of the victim. If the banner is unknown to Hajime,
it will randomly try credentials. In doing so, Hajime increases its chances of successfully
exploiting the device within a limited set of login attempts and avoid the account being locked or
its IP being blacklisted for a set amount of time.

From the honeypot interactions Radware found when presented with a MikroTek login banner,
Hajime will consistently use ‘admin’ as user with an empty password, much in line with the
default factory credentials of RouterOS as per the Mikrotik documentation.

When the login banner does not reveal much, it only prompts the user and password, which was
consistently ‘root’ and ‘vizxv’, a signature credential which point to Dahua cameras.

(Figure 9: login prompt not revealing any information of the host device)

Upon getting access to a victim’s shell, Hajime runs a sequence of commands to detect the
architecture of the device and find a writable file system to place its working path. The infection
command sequences witnessed by Radware’s honeypots were mostly identical:

https://w00tsec.blogspot.com/2015/11/arris-cable-modem-has-backdoor-in.html
https://wiki.mikrotik.com/wiki/Manual:First_time_startup

 ERT Threat Advisory
Hajime – Friend or Foe?

April 26, 2017

(Figure 10: sequence of commands used by Hajime to infect a device)

Hajime does a blind attempt at getting a system Linux shell in line 1-3. In line 4, it lists out the
mounted file systems and their associated permissions. It will prefer a temporary or RAM based
file system which is writeable to perform its infection. This ensures that any temporary
downloads, named pipes and directories are gone after a reboot and there is no indicator of
compromise left that would allow one to detect a device ever was infected by Hajime.
Radware’s honeypots are programmed with a fixed response to the ‘cat /proc/mounts’ command
and the first writable temporary file system (tmpfs) we announce is ‘/dev/shm’ and that is
subsequently used in line 5 as the working path.

At this point, you should have noticed the use of ‘/bin/busybox YTYIK’. When executing this
command on a system, the command responds with ‘YTYIK: applet not found.’

(Figure 11: busybox run with unknown applet name)

Hajime uses the output of this command as a delimiter while parsing the responses of previous
commands. The initial version of Hajime consistently used ECCHI as a 5-character delimiter as
reported by Rapidity Networks, while the newer Hajime versions use a random sequence of 5
characters in an attempt to evade any pre-programmed honeypots.

Continuing with line 5, once a suitable working path was found and the current working directory
changed to that location, Hajime tests for the existence of a hidden file called ‘.s’. If ‘.s’ does not
exist, it will copy the echo binary to the working file ‘.s’ in the current working directory. This file
will be important later in the command sequence.

On line 6, Hajime tests for the availability of the ‘nc’ and ‘wget‘ commands. The ‘nc’ or netcat
command can be used for transferring information using TCP or UDP. I assume that ‘nc’ could
be used to download the Hajime binary from an adequate loader service through UDP, did
however not observe this behavior in Radware’s Honeypots, not even when half of Radware’s
honeypots were programmed to report the availability of the ‘nc’ command and ‘wget’ as an
unknown command. Hajime kept consistently downloading its binary using the ‘wget’ command
as in line 9. As we will see later though, Hajime’s loader service listens for TCP and UDP on the
same port.

 ERT Threat Advisory
Hajime – Friend or Foe?

April 26, 2017

Line 7 dumps the first 52 bytes of the ‘.s’ file, which in this case is a working copy of the
platform’s ‘echo’ binary. In case the ‘dd’ command, used to sequentially read bytes from a file, is
not available on the system, the command reverts to the ‘cat’ command that will dump the full
‘.s’ binary contents to standard output. Hajime uses the first few bytes of the ‘.s’ binary to detect
the platform it is trying to infect, pretty much the same way the Unix ‘file’ command detects the
type of file. The binary type will be important for the download of the malware binary.

Line 9 removes the temporarily ‘.s’ file and downloads the binary using ‘wget’ and the HTTP
protocol for a specific IP and port. The IP of the loader service does not always match the IP of
the device that is performing the infection – in some cases it did, but in most cases the IP of the
loader service was not related to the source IP of the infecting device. The port used by the
HTTP download is a random high port number (1024 < port < 65535). In the case of the
infecting device also providing the loader service, this command would be obvious to generate.
However, out of the 9,832 unique loader sevice IPs, 6,600 do not correspond to the 12,023
unique IPs that were performing the infection. So roughly in 1 out of 2 cases the IP of the loader
service did not match the IP of the infecting device. This indicates that Hajime is able to detect
devices that do not have their higher ports accessible from the internet and can fall back to a
knowingly accessible node that can.

Fallback To A Dynamically Generated Download Stub Program

During the previously discussed infection process, there is no stage 1 loader as reported by
Rapidity Networks. The victim’s available ‘wget’ binary replaces the functionality of the stage 1
loader. Psychotropo’s update also reported an alternative stage 1 loader process upon infecting
ARRIS modems. The ARRIS modems apparently lack the ‘wget’ command and Hajime is falling
back to an infection through a dynamically generated stage 1 binary.

We witnessed similar behavior when presenting a ‘DD-WRT linksys’ login banner and reporting
‘wget’ not being available on the simulated platform (honeypot). In that specific case, the
infection sequence looked like:

(Figure 12: alternate sequence of commands to infect a device using loader stub .s)

https://en.wikipedia.org/wiki/File_(command)

 ERT Threat Advisory
Hajime – Friend or Foe?

April 26, 2017

The first few lines of this alternate infection method are comparable to the first part of the
previously discussed infection method except for the ping command that has been introduced.
The command is only testing for the availability of ‘ping’ on the victim’s system. Psychotropo
reported similar behavior about the ARRIS modem infection.

Because ‘wget’ is not available, Hajime requires an alternative way to download its malware
binary to the victim. This is what lines 7 till 16 are about in the above image. Line 7 assures that
previously used ‘.s’ file is truncated (empty) and copies that empty file to ‘.i’. Remember that a ‘.’
before the filename is the way Unix hidden files are created.

The ‘echo –ne’ commands in line 8 till 15 concatenate hex encoded binary strings to the ‘.s’ file.
This is effectively the creation of an executable stub program which will download the actual
malware binary in much the same way ‘wget’ did in the previous infection method.
In the last line (16) the ‘.s’ generated executable is ran and its output written to ‘.i’. After the
malware binary was downloaded into ‘.i’, ‘.i’ is made executable and started.

From to the Rapidity Networks report we know that the stage 1 ‘.s’ download stub program
establishes a TCP connection to the loader service and writes all received bytes to its stdout file
descriptor. The Rapidity Networks researchers also found that this ‘.s’ download stub program is
handcrafted assembly and optimized for each Hajime supported platform. This makes sense as
the binary is dynamically generated through hex encoded strings from the shell commands, so
size does matter in this case. This shows the care that was taken in designing and building the
Hajime malware and adds to its sophisticated nature. Also note that the IP address and port
number of the loader server must be encoded in the binary on the fly by the infecting node – this
can only be done through binary patching at the location of the server address and port in the
data segment of the binary, which again exemplifies the sophistication of the malware and its
author.

Startup

Once the infection performed and the initial ‘.i’ binary loaded on the system is it executed. Upon
starting, the program executes ‘iptable’ commands which alter packet filters on the system to
drop all packets with destination port:

 TCP/23 (telnet) – the primary exploit vector of Mirai and most IoT botnets

 TCP/7547 (TR-069) – as first used in the DT attack by a Mirai variant

 TCP/5555 (TR-069) – alternate port commonly used in TR-069

 TCP/5358 (WSDAPI) – see separate section at the end about WSDAPI

 ERT Threat Advisory
Hajime – Friend or Foe?

April 26, 2017

(Figure 13: strace lines with fork and exec’s performed by .i binary and all its children)

It also tries to delete the CWMP_CR rule (-D) and chain (-X). CWMP most probably refers to the
CPE WAN Management Protocol TR-069. Possibly some ISP’s modems are configured using
this user-defined chain to allow remote management from specific IPs or subnets. In any case,
the ruleset gets deleted and all TR-069 connectivity is dropped, leaving the ISP without remote
management capabilities for infected modem devices.

The last packet filter alteration the main executable does is opening port UDP/1457 for incoming
packets. This port is used for the Torrent DHT and peer-to-peer communications.

Then the malware bootstraps its torrent DHT (Distributed Hash Table) from
‘router.bittorrent.com’ and ‘router.utorrent.com’ on port 6881, which allows it to connect to its
torrent peers in a trackerless torrent network. To create the trackerless torrent network, the
program uses dynamically generated info_hashes. The 160-bit torrent info_hashes are SHA1
hashes generated based on the current date and the filename of shared resource – more details
available in the excellent Rapidity Networks report. For the dynamic info_hashes to effectively
work, it is important that the date and time on all peers of the torrent network are synchronized,
therefore the malware periodically syncs time using the NTP protocol from ‘ntp.pool.org’ on
default NTP port 123.

Different torrent info_hashes are used to identify the configuration file (‘config’) and any updated
binaries of itself and its extension module across its peers. Hajime uses the BitTorrent uTP
protocol for peer-to-peer communication. uTP implements reliable, in-order transport and flow-
control on top of UDP. Using uTP instead of TCP Hajime can reuse the same socket (fd=4) and
port (1457) for both peer-to-peer communication (download/upload) and DHT communication.
‘strace’ output – binding socket 4 with UDP/1457 for torrent DHT exchanges and uTP
downloads + bootstrapping the DHT and ‘get_peers’ DHT query for a specific info_hash:

1739 22:55:18.616365 socket(PF_INET, SOCK_DGRAM, IPPROTO_UDP) = 4
1739 22:55:18.616448 fcntl(4, F_GETFL) = 0x2 (flags O_RDWR)
1739 22:55:18.616516 fcntl(4, F_SETFL, O_RDWR|O_NONBLOCK) = 0
1739 22:55:18.616583 setsockopt(4, SOL_SOCKET, SO_BINDTODEVICE, [812151909], 4) = 0
1739 22:55:18.616663 setsockopt(4, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0
1739 22:55:18.616738 bind(4, {sa_family=AF_INET, sin_port=htons(1457), sin_addr=inet_addr("0.0.0.0")}, 16) = 0
 --> socket 4 for torrent communication on port 1457

1739 22:55:18.694150 socket(PF_INET, SOCK_DGRAM, IPPROTO_UDP) = 5

 ERT Threat Advisory
Hajime – Friend or Foe?

April 26, 2017

1739 22:55:18.694235 connect(5, {sa_family=AF_INET, sin_port=htons(53), sin_addr=inet_addr("8.8.8.8")}, 28) = 0
1739 22:55:18.694339 send(5, "\0\3\1\0\0\1\0\0\0\0\0\0\6router\10utorrent\3com\0\0\1\0\1", 37, 0) = 37
 --> use Google name server 8.8.8.8 to resolve router.utorrent.com for DHT bootstrapping

1739 22:55:18.694477 poll([{fd=5, events=POLLIN}], 1, 5000) = 1 ([{fd=5, revents=POLLIN}])
1739 22:55:18.720538 recv(5,
"\0\3\201\200\0\1\0\1\0\0\0\0\6router\10utorrent\3com\0\0\1\0\1\300\f\0\1\0\1\0\0\0\21\0\4R\335g\364", 512,
MSG_DONTWAIT) = 53
 --> received IP of router.utorrent.com

1739 22:55:18.720630 close(5) = 0
1739 22:55:18.720745 sendto(4,
"d1:ad2:id20:\235\244/\246!\311+\221\255\237\231B6\250n\217\325\374\26\331e1:q4:ping1:t4:pn\0\0001:v4:UT\0\0001:y
1:qe", 67, 0, {sa_family=AF_INET, sin_port=htons(6881), sin_addr=inet_addr("82.221.103.244")}, 16) = 67
 --> ping router.utorrent.com port 6881 to bootstrap DHT

1739 22:55:18.721419 socket(PF_INET, SOCK_DGRAM, IPPROTO_UDP) = 5
1739 22:55:18.721499 connect(5, {sa_family=AF_INET, sin_port=htons(53), sin_addr=inet_addr("8.8.8.8")}, 28) = 0
1739 22:55:18.721589 send(5, "\0\4\1\0\0\1\0\0\0\0\0\0\6router\nbittorrent\3com\0\0\1\0\1", 39, 0) = 39
1739 22:55:18.721687 poll([{fd=5, events=POLLIN}], 1, 5000) = 1 ([{fd=5, revents=POLLIN}])
1739 22:55:18.749178 recv(5,
"\0\4\201\200\0\1\0\1\0\0\0\0\6router\nbittorrent\3com\0\0\1\0\1\300\f\0\1\0\1\0\0\3}\0\4C\327\366\n", 512,
MSG_DONTWAIT) = 55
1739 22:55:18.749273 close(5) = 0
1739 22:55:18.749373 sendto(4,
"d1:ad2:id20:\235\244/\246!\311+\221\255\237\231B6\250n\217\325\374\26\331e1:q4:ping1:t4:pn\0\0001:v4:UT\0\0001:y
1:qe", 67, 0, {sa_family=AF_INET, sin_port=htons(6881), sin_addr=inet_addr("67.215.246.10")}, 16) = 67
 --> resolve and ping router.bittorrent.com using DHT protocol on port 6881

...
1739 22:58:50.519401 sendto(4,
"d2:ip6:]q\205\34j\0371:rd2:id20:L\325\347\326\203\7m\307\211\t\31u\344\363\357\6\24zE\2675:nodes208:\233\360\360
\313\234\353\272%\32\244Oy[F\233\231\26d\250V\255\26W\202\32\341\2371\33s\217\v\377\303\0261q\200\4\217\237\
2Zc\213(\227\353\362\0^\362\2376G]\374/\6~\f.B]\221\0\17i2\377O\202V\5\270\371\252[\211$\305g\"]\222\246s>\320\2
15\37?\312\363vF\302\225\260q\255{\322\37\321\223e\10\342\346\221\26\351}\5T\237G&\261\213\271iQ\260\237Z\265
\241\321\314M\5\312\255r\32\245\336\315\211\n\211b\243s\314\345v\236m\17\340D8\240\353\3776isQ\377J\354)\315\
272\253\362\373\343F|\302gR\335g\364\32\341\351.\327:\252\3126\335\353\370\211\275\364\302f\364\322Q\6\255\31
3\22\374\306\356\321e1:t4:\225q\0\0001:v4:UT\0\0001:y1:re", 289, 0, {sa_family=AF_INET, sin_port=htons(27167),
sin_addr=inet_addr("93.113.133.28")}, 16) = 289
 --> DHT message
1739 22:58:50.649092 sendto(4,
"d1:ad2:id20:L\325\347\326\203\7m\307\211\t\31u\344\363\357\6\24zE\2679:info_hash20:p*\200\202y}\331\311\301\355
\266/R\35\205?\367\351A\216e1:q9:get_peers1:t4:gpZ\3701:v4:UT\0\0001:y1:qe", 106, 0, {sa_family=AF_INET,
sin_port=htons(6881), sin_addr=inet_addr("24.2.41.73")}, 16) = 106
 --> get peers for torrent identified by info_hash

1739 22:58:50.912044 recvfrom(4,
"d2:ip6:[\260\221U\5\2611:rd2:id20:\2756\6\227.\10M\360\342\354\335\314\3549\367\274\245\262\343r5:nodes208:\265
\200HI\362\360\373T*\250\267\234yUD\203xB\326\364#\236$\330\37\254\264|zA#\206\1\237A\230\250\4Yv(az\276\236E
\5\207\241|\310\325\267\303\202\251\215\274\252\235AC\367\266z\3\223\372\271A=b\5\207\231\31\32\340\266\244\2
12Q\341\216\316\325*K\336\334\263\3329\351\232A\244O\301U\275k\340w\261\322\375\226\220\205\256\v\233dN\25
5k\rI
(\327$\30\255\266\243\374\251\353\260\204\275*&\317t\257u\257\351\357%\206\307L,=\352q^\27\6\f\32\341\263\351\
23\313\374\3239l\317\256\316ROPo\202\354du\215^\3629z\310\325\262r\303\275|b%\212\275\253f\5\240\252\305^\34
5\210[L\262

 ERT Threat Advisory
Hajime – Friend or Foe?

April 26, 2017

\331k\4\0025:token20:S\37\251<\234\305\t\206\334\360\230U\3235\216\365\4T\4\30e1:t4:gp]\3701:v4:UT\251|1:y1:re",
1499, 0, {sa_family=AF_INET, sin_port=htons(30340), sin_addr=inet_addr("80.0.119.85")}, [16]) = 319

The config file is downloaded every 10 minutes using uTP from peers identified through the
DHT queries. The download period corresponds to the below message that is periodically
written on the terminal:

(Figure 16: message periodically displayed on the terminal by Hajime)

Notice the use of ‘signed’ in above message – referring to the fact that all torrent
communications are encrypted using the RC4 stream cipher using public and private keys. As
noticed by Psychotropos, the misuse of C’s rand() function as reported by Rapidity Networks in
their original report has since been fixed. This proves the fact the author of the malware is well
aware of the report which could also be deduced from him signing his messages with ‘Hajime
Author’. Rapidity Networks originally attributed the name Hajime, so before the Rapidity report
there was no ‘Hajime’, just a malware. After the report, the malware became known as Hajime
and the author of the malware started signing subsequent versions using ‘Hajime Author’.

Upon downloading the ‘atk’ extension binary through its torrent network, the main process ‘.i’
forks a new process to execute ‘atk’. Before doing so, a named pipe called ‘fifo’ is created in the
current working directory of the main process, and as ‘atk’ clones the open filedescriptors, this
named pipe is used to pass information from the ‘atk’ process to the main ‘.i’ process. I assume
this information includes newly infected victims and their reachability information for the loader
service ports, as this information must be shared with all peers to enable nodes with
unreachable high port numbers to use the alternate loaders for download of the malware.
Because Radware did not allow our sandbox sample to infect other nodes, we did not witness
this sharing of information, we only found a periodic new-line exchanged through the named
pipe.

Upon starting, the ‘atk’ extension process alters the firewall rules to accept incoming
connections on UDP and TCP for what appears to be a random port. In the process tree below,
that port is 45814, but this port changes between devices. The port is used as a service loader
endpoint and allows ‘atk’ to serve any of the downloaded binaries in the ‘.p’ folder during the
infection of a victim.

 ERT Threat Advisory
Hajime – Friend or Foe?

April 26, 2017

(Figure 17: process tree of executing Hajime malware)

ATK Scanning

The SYN scanner implemented by ATK is build using a raw socket. TCP packets are
constructed by ATK and then send out by writing them to a single allocated socket for that
purpose (fd 8).

2036 22:58:50.613189 socket(PF_INET, SOCK_RAW, IPPROTO_TCP) = 8
2036 22:58:50.613442 fcntl(8, F_SETFL, O_RDWR|O_NONBLOCK) = 0
2036 22:58:50.613517 setsockopt(8, SOL_IP, IP_HDRINCL, [1], 4) = 0
 --> raw TCP socket

2036 22:58:50.619469 sendto(8, "E\0(\0\225\224\0\0\377\6
\320\254\20\0\27u<\365}k\324\24\3563K\0\0\0\0\0\0P\0029\10\253\353\0\0", 40, 0,
{sa_family=AF_INET, sin_port=htons(0), sin_addr=inet_addr("aaa.bbb.ccc.ddd")}, 16) = 40
 --> send raw TCP packet to victim with IP aaa.bbb.ccc.ddd (port is encoded in raw TCP data - see below)

$ printf "%b" "E\0(\0\225\224\0\0\377\6
\320\254\20\0\27u<\365}k\324\24\3563K\0\0\0\0\0\0P\0029\10\253\353\0\0" | od -x
0000000 0045 0028 9495 0000 06ff d020 10ac 1700
0000020 3c75 7df5 d46b ee14 4b33 0000 0000 0000
0000040 0250 0839 ebab 0000

Network byte order is big endian, arm7 is little endian:

$ lscpu
Architecture: armv7l
Byte Order: Little Endian
CPU(s): 4
On-line CPU(s) list: 0-3
Thread(s) per core: 1
Core(s) per socket: 4
Socket(s): 1

 ERT Threat Advisory
Hajime – Friend or Foe?

April 26, 2017

Model name: ARMv7 Processor rev 4 (v7l)
CPU max MHz: 1200.0000
CPU min MHz: 600.0000

The hex values in 'od' output need to be swapped, resulting in
0000000 4500 2800 9594 0000 ff06 20d0 ac10 0017
0000020 753c f57d 6bd4 14ee 334b 0000 0000 0000
0000040 5002 3908 abeb 0000

Mapping the above binary data to a TCP header struct:

(fig: raw buffer used by SYN scanner mapped to TCP header struct)

Once a victim is found through the SYN scan on port 23 or 5358, a separate TCP socket is
opened for each attempt to exploit a victim.

Below is a snapshot of all open file descriptors of the ‘atk’ process during exploits:

(Figure 21: snapshot of file descriptors open in the atk process)

 ERT Threat Advisory
Hajime – Friend or Foe?

April 26, 2017

From the above, we see file descriptor 0, 1 and 2 which are mapped to the pseudo terminal
device pts/0 and corresponding to the default stdout, stdin and stderr. File descriptor 3 is the
named pipe ‘fifo’ we described earlier, used for IPC between ‘atk’ and the main process ‘.i’.
File descriptor 4 corresponds to a UDP socket bound on port 1457, presumably a leftover from
the main ‘.i’ process where this socket was used for the torrent DHT and peer to peer
communication – the atk process does not perform torrent communication, this is exclusively
performed by the .i process.

File descriptors 5 and 6 are the sockets for the TCP and UDP loader service which provides a
download location for the ‘wget’ or the ‘.s’ stub binary when they perform a remote victim
infection.

File descriptor 8 corresponds to the raw TCP socket used for the SYN scans.
File descriptors 9 to 23 are examples of sockets with established TCP connections to remote
telnet and WSDAPI (5358) services, used during the exploit process.

Indicators of Comprise

Upon starting, both the main process ‘.i’ and the extension module ‘atk’ overwrite their original
executable name by copying over the first argument (argv[0]) with ‘telnetd’. Using ‘ps’ on a
compromised system will show 2 ‘telnetd’ processes:

ps aux | grep telnetd
root 2013 1.5 0.1 1008 992 ? Ss 16:24 0:25 telnetd <--.i
root 2069 2.8 0.0 692 640 ? S 16:26 0:41 telnetd <-- atk
root 2186 0.0 0.2 4276 2008 pts/2 S+ 16:51 0:00 grep telnetd

The binary files .i and atk are unlinked during the start of the process. You can still access and
copy the binaries through the /proc special file system, i.e.:

cat /proc/2069/exe > ./atk-binary
cat /proc/2013/exe > ./hajime.bin

In the working directory where the main process .i is executed there will be a ‘fifo’ file entry
corresponding to the named pipe between .i and atk. The same directory will also contain a ‘.p’
hidden directory that is used to store the binaries downloaded from the torrent network and a ‘.d’
hidden directory under that.

Hajime does not make efforts to persist across reboots and hence after rebooting all malware
processes are eradicated and the system comes back un-infected, ready to be re-infected.
Since the infection process prefers tmpfs type filesystems which are volatile cross reboot, the
‘fifo’ file and ‘.p’ directory will leave any evidence of prior compromise after reboot.

UPNP-IGD

During static analysis of the ‘atk’ binary (the extension module), traces of UPnP-IGD code were
found indicating that ‘atk’ is able to dynamically punch pin-holes and install port forwarding rules
in gateway devices that would prevent it from exposing its ports on the internet. So even when
running in a protected home network, an infected device is able to partake in the botnet.

 ERT Threat Advisory
Hajime – Friend or Foe?

April 26, 2017

(Figure 24: reversed code segment of atk binary - 1)

(Figure 25: reversed code segment of atk binary - 2)

WSDAPI (TCP/5358)
Port TCP/5358 is known to be used by the Web Service on Devices API (WSDAPI). WSDAPI is
Microsoft's interoperable implementation of the open Device Profile for Web Services (DPWS)
specification. DPWS provide a specification for Web Service implementation on resource
constrained embedded devices. Its objectives are similar to those of UPnP. At the International
Security Controls (ISC) tradeshow, a major security company demonstrated a security system
that supported DPWS, while the Kitchen and Bath Show (KBIS) saw two major appliance

 ERT Threat Advisory
Hajime – Friend or Foe?

April 26, 2017

manufacturers demonstrating washers and dryers that communicated using DPWS. A
communicative oven has been demonstrated at the International Building Show for the past two
years. An even greater sign of the drive towards market acceptance of DPWS is the introduced-
in-2006 "ConnectedLife.Home" home automation package offered by US retailer Best Buy. The
package uses automation software and controllable devices that leverage DPWS for
communications.

WSDAPI can be used for easy SOAP based communications between devices (including
embedded devices) and clients. The client API allows client applications to retrieve a description
of services hosted on a device and use those services after successfully discovering them.
WSDAPI uses SOAP/HTTP(S) and TCP port 5358 for HTTP and port 5358 for HTTPS traffic by
default. The WSDAPI provides a generic SOAP stack for use by client and service applications.
Examples of services are printer and scanner services and also services provided by DVR's and
NVR's.

What is Busybox & Why Is It So Commonly Seen in Attacks Against IoT Devices

Busybox is one large executable binary that embeds most used Linux commands such as cat,
echo, zip, reboot, mount, kill, telnet, telnetd, … It is very popular for use in embedded systems
because it allows to compile and deploy a single binary that provides all CLI commands, versus
having to compile, install, and maintain every command as a separate binary.

You do not typically see busybox in server deployments, it is mainly used in embedded linux
operating environments and hence its use in IoT devices. Currently defined Busybox functions:

(Figure 26: busybox useage and defined functions on stock Raspbian/Raspberry Pi 3)

Effective DDoS Protection Essentials:

 Hybrid DDoS Protection - (on-premise + cloud) – for real-time DDoS attack prevention that also

addresses high volume attacks and protects from pipe saturation

 Behavioral-Based Detection - to quickly and accurately identify and block anomalies while allowing

legitimate traffic through

 ERT Threat Advisory
Hajime – Friend or Foe?

April 26, 2017

 Real-Time Signature Creation - to promptly protect from unknown threats and 0-day attacks

 A cyber-security emergency response plan - that includes a dedicated emergency team of experts

who have experience with Internet of Things security and handling IoT outbreaks

Effective Web Application Security Essentials

 Full OWASP Top-10 application vulnerabilities coverage– against defacements, injections, etc.

 Low false positive rate – using negative and positive security models for maximum accuracy

 Auto policy generation capabilities for the widest coverage with the lowest operational effort

 Bot protection and device fingerprinting capabilities to overcome dynamic IP attacks and

achieving improved bot detection and blocking

 Securing APIs by filtering paths, understanding XML and JSON schemas for enforcement, and

activity tracking mechanisms to trace bots and guard internal resources

 Flexible deployment options - on-premise, out-of-path, virtual or cloud-based

For further security measures, Radware urges companies to inspect and patch their network in order to

defend against risks and threats.

Under Attack and in Need of Expert Emergency Assistance? Radware Can Help.

Radware offers a service to help respond to security emergencies, neutralize the risk and better

safeguard operations before irreparable damages occur. If you’re under DDoS attack or malware

outbreak and in need of emergency assistance, Contact us with the code "Red Button".

Learn More at DDoS Warriors
To know more about today’s attack vector landscape, understand the business impact of cyber-attacks or

learn more about emerging attack types and tools visit DDoSWarriors.com. Created by Radware’s

Emergency Response Team (ERT), it is the ultimate resource for everything security professionals need

to know about DDoS attacks and cyber security.

https://www.radware.com/underattack/
https://security.radware.com/
https://www.radware.com/Products/ERT/

