Hacking Democracy: Vulnerable Voting Infrastructure and the Future of Election Security


It’s been two years since international interference sabotaged the United States’ election security, and still the vulnerability of our voting infrastructure remains a major problem. This past May, during Tennessee’s primary election, the Knox County election website fell prey to a DDoS attack. And just days ago, Texas voters experienced “ominous irregularities” from voting machines.

In the lead up to the midterm elections, Radware surveyed Facebook users on the safety of U.S. elections, and the results paint a gloomy picture. The overwhelming majority (93.4 percent) of respondents believe that our election system is vulnerable to targeting and hacking—and they’re correct. What’s more, respondents were unable to suggest long-term tenable solutions when asked how the U.S. can improve its election safety (which is understandable, given the complexity of the issue).

A Seriously Flawed Voting Infrastructure

It is alarmingly quick and easy to hack into U.S. voting systems; just ask the 11-year-old boy who earlier this year demonstrated how he could hack into a replica of the Florida state election website and change voting results in under 10 minutes.

Why is it so easy? A large part of the problem is a lack of consistency among state election systems in either protocols or equipment. Voting equipment varies from paper ballots, to punch cards to electronic touch screens. Some states manually count votes while others use automation. Because of these many variables, each state has different security flaws and different vulnerability of being hacked.

There are roughly 350,000 voting machines used in the U.S. today, according to Verified Voting. There are two types of machines: direct-recording electronic (DRE) machines, which are digital and allow voters to touch a screen to make their selections, and optical-scan systems. Optical-scan machines allow voters to make their selections on a paper ballot, which gets fed into an optical scanner and can be used later to verify the digital results. The DREs are of particular concern because all models are vulnerable to hacking. And because DREs do not provide a hard copy of the vote, it is difficult to double-check results for signs of manipulation.

[You may also like: Can Hackers Ruin America’s Election Day?]

Additionally, voting machines need to be programmed with ballot information, which likely happens by direct connection to the Internet. Precinct results are often centrally tabulated by state and local governments over their various local area networks, adding even more points of potential hacking and vote manipulation.

Multiple voting machines, multiple connection points, multiple network architectures, multiple tabulation systems. There is no consistent framework to secure thousands of potential different weaknesses.

Today, the burden lies with local municipalities, which are ill-equipped to deal with sophisticated, nationally-organized cyber security attacks by hostile foreign governments. That’s the bad news. But the good news is that we can do something about it.

We Need to Reboot

This midterm election, it’s estimated that 1 in 5 Americans will cast ballots on machines that do not produce a paper record of their votes. This is highly problematic when you consider that the Department of Homeland Security (DHS) identified election system hacking in 21 states—nearly half of the country—last September. If left unaddressed, these vulnerabilities will continue to threaten national security and our democratic system.

The federal government, through DHS, needs to help municipalities and government workers minimize risks and become smarter about election hacking issues by taking these steps:

  • Teach administrative staff about phishing scams, DDoS attacks, etc.  While election officials and staff are trained on the proper procedures and deployment of their voting systems, it is also important that be educated on cybersecurity events so that they are not as likely to fall prey to them and compromise local networks.
  • Do not open any attachments without confirming the attachment came from a trusted source. Attachments are one of the biggest security risks, particularly attachments coming from unknown, suspicious or untrustworthy sources.
  • Use best practices for password protection such as two-factor authentication so that security is maximized. This method confirms users’ identities through a combination of two different factors: something they know and something they have, like using an ATM bank card which requires the correct combination of a bank card (something that the user has) and a PIN (something that the user knows).
  • Keep all software updated. Turn on auto-updates on your phone and laptops – don’t wait to apply them.
  • Check for firmware updates on all printer and network devices as part of your regular patch management schedule as these devices can be weaponized. Updates can add new or improved security features and patch known security holes.
  • Do not conduct any non-government related activity while connected to the network – fantasy football, signing your kid up for soccer, etc.

[You may also like: DDOS Protection is the Foundation for Application Site and Data Availability]

The Future of Election Security

Looking forward, innovative technologies such as blockchain, digital IDs and electronic signatures should be considered on a single, national voting network. Some states, like West Virginia, have already deployed pilot programs enabling voting via a blockchain network to store and secure digital votes.

The threat of interference remains until we are on a secure nationwide election system. To preserve the democratic value of one person one vote, the U.S. must make the necessary security upgrades to prevent voter fraud, foreign influence campaigns and hacking of our election infrastructure. Federal legislation needs to be introduced to make this happen. Protecting our elections is a matter of national security, requiring immediate action and coordination at all levels of government.

 

Read “Radware’s 2018 Web Application Security Report” to learn more.

Download Now

Mike O'Malley

Mike O’Malley brings 20 years of experience in strategy, product and business development, marketing, M&A and executive management to Radware. Currently, Mr. O’Malley is the Vice President of Carrier Strategy and Business Development for Radware. In this role, he is responsible for leading strategic initiatives for wireless, wireline and cloud service providers. Mr. O’Malley has extensive experience developing innovative products and strategies in technology businesses including security, cloud and wireless. Prior to Radware, Mr. O’Malley held various executive management positions leading growing business units at Tellabs, VASCO and Ericsson. Mr. O’Malley holds a Master of Business Administration degree, a Master of Science in electrical engineering, and a Bachelor of Science in electrical engineering from the University of Illinois. He also is a graduate of the Executive Strategy Programs at the University of Chicago.

Contact Radware Sales

Our experts will answer your questions, assess your needs, and help you understand which products are best for your business.

Already a Customer?

We’re ready to help, whether you need support, additional services, or answers to your questions about our products and solutions.

Locations
Get Answers Now from KnowledgeBase
Get Free Online Product Training
Engage with Radware Technical Support
Join the Radware Customer Program

CyberPedia

An Online Encyclopedia Of Cyberattack and Cybersecurity Terms

CyberPedia
What is WAF?
What is DDoS?
Bot Detection
ARP Spoofing

Get Social

Connect with experts and join the conversation about Radware technologies.

Blog
Security Research Center