From Rule- to Machine Learning-Based Security

Many enterprises have responded by implementing the aforementioned API management solutions that provide mechanisms, such as authentication, authorization and throttling. These are long-standing must haves for controlling who accesses APIs across the application ecosystem—and how often.

However, organizations also need to address the growth of more sophisticated attacks on APIs by complementing these “point” solutions with machine learning-driven security.

[You may also like: The 2020 App Threats Landscape in Review]


Rule-based and policy-based security checks, which can be performed in a static or dynamic manner, are mandatory parts of any API management solution. API gateways serve as the main entry point for API access and therefore typically handle policy enforcement by inspecting incoming requests against policies and rules related to security, rate limits, throttling, etc.

These policy-based approaches around authentication, authorization, rate limiting and throttling are effective tools, but they still leave vulnerabilities through which hackers can exploit APIs. Notably, API gateways front multiple web services, and the APIs they manage are frequently loaded with high numbers of sessions, making it difficult for a gateway to inspect every request.

Moreover, SAST and DAST testing solutions, while effective at evaluating source code and testing application functionality for security vulnerabilities, only provide reactive insight into API and application vulnerabilities; they do not provide proactive, automated protection.

Machine Learning

Machine-learning based application security solutions are adaptive by automatically detecting and responding to dynamic attacks and application/API vulnerabilities. First and foremost, they should automatically detect and protect new web applications as they are
added to the network via automatic policy generation.

In addition, machine learning can eliminate API abuse such as token manipulations, parameter tampering, protocol attacks, invalid schemas and more. An enterprise-grade firewall should import, enumerate and catalog APIs to enforce standards and schemas using behavioral protections and positive security.

[You may also like: Application Security in 2021]

Warning Signs

Here are seven warning signs your applications/APIs are vulnerable:

  • Using non-defined/non-allowed HTTP methods for an API endpoint
  • Embedding web attacks in JSON payloads or parameters
  • Excessively utilizing the APIs
  • Attempting to break the API authentication process through an account takeover attack
  • Sending requests not according to the JSON/XML schemas
  • An API key rotation – or a successful login from an unusual source
  • Extremely high application usage from a single IP address or API token

Download The State of Web Application and API Protection to learn more.

Download Now


Contact Radware Sales

Our experts will answer your questions, assess your needs, and help you understand which products are best for your business.

Already a Customer?

We’re ready to help, whether you need support, additional services, or answers to your questions about our products and solutions.

Get Answers Now from KnowledgeBase
Get Free Online Product Training
Engage with Radware Technical Support
Join the Radware Customer Program


An Online Encyclopedia Of Cyberattack and Cybersecurity Terms

What is WAF?
What is DDoS?
Bot Detection
ARP Spoofing

Get Social

Connect with experts and join the conversation about Radware technologies.

Security Research Center